Studio semplice di una funzione omografica

Studio semplice di una funzione omografica

       a x + b
y = ———–  , c≠o
       c x + d

     2 x – 1
y = ———–
    -x + 3

Dominio:  {x ∈  / -x + 3 ≠ 0,  x≠ 3}

Intersezioni con assi:
con asse x
      2 x – 1
y = ———– ,        y = 0      per  x = 1/2 ,     y=0    
     -x + 3
La funzione passa per il punto A (1/2,0)

con asse y
       2 x – 1
y = ———– ,       x = 0
      -x + 3

x = 0 , y = – 1/3

La funzione passa per il punto B (0, -1/3)

Asintoti: x=-d/c        x=3 asintoto verticale,
                        y=a/c
          y=-2 asintoto orizzontale

Segno della funzione
       2 x – 1
y = ———– 

      -x + 3

y > 0     N>0      x >1/2 ,  
              D>0      -x + 3 >0      -x>-3     x<3

N——————1/2++++++++++++++

D++++++++++++++++++++++3———

Si ha:
per x<1/2       y < 0
per x = 1/2     y = 0
per 1/2<x<3   y>0
per x=3 non esiste
per x>3           y<0

Si può poi fare una tabella per trovare le coordinate di qualche punto e tutte le informazioni vanno riportate nel piano cartesiano.


funzione omografica

Se si studia la funzione con conoscenze superiori di Analisi Matematica, vanno calcolati limiti e derivata.


mtb

This post has already been read 12558 times!

  •  
  •  
  •  
  •  
  •  

» 43.075 views   Stampa questo articolo Stampa questo articolo

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Pagina 1 di 11

XML Sitemap