» 20.132 views   Stampa questo articolo Stampa questo articolo

2 thoughts on “Teorema di Pitagora di Liu Hui

  1. 48 + 1 = 7 x 7
     
    1_ x 12 = 12______________1 + 2 = 3
    2_ x 12 = 24______________2 + 4 = 6
    3_ x 12 = 36______________3 + 6 = 9
    4_ x 12 = 48___4 + 8 = 12 = 1+2 = 3
    5_ x 12 = 60_______________6+0 = 6
    6_ x 12 = 72_______________7+2 = 9
    7_ x 12 = 84____8+4 = 12 = 1+2 = 3
    8_ x 12 = 96____9+6 = 15 = 1+5 = 6
    9_ x 12 = 108____________1+0+8 = 9
    10 x 12 = 120____________1+2+0 = 3
    11 x 12 = 132____________1+3+2 = 6
    12 x 12 = 144____________1+4+4 = 9
     
    13 x 12 = 156__1+5+6 = 12 = 1+2 = 3
    14 x 12 = 168__1+6+8 = 15 = 1+5 = 6
    15 x 12 = 180_____________1+8+0 = 9
    16 x 12 = 192__1+9+2 = 12 = 1+2 = 3
    17 x 12 = 204_____________2+0+4 = 6
    18 x 12 = 216_____________2+1+6 = 9
    19 x 12 = 228__2+2+8 = 12 = 1+2 = 3
    20 x 12 = 240_____________2+4+0 = 6
    21 x 12 = 252_____________2+5+2 = 9
    22 x 12 = 264__2+6+4 = 12 = 1+2 = 3
    23 x 12 = 276__2+7+6 = 15 = 1+5 = 6
    24 x 12 = 288__2+8+8 = 18 = 1+8 = 9
     
     
    25 x 12 = 300_____________3+0+0 = 3
    ~~~
    36 x 12 = 432_____________4+3+2 = 9
     
     
    37 x 12 = 444__4+4+4 = 12 = 1+2 = 3
    ~~~
    48 x 12 = 576__5+7+6 = 18 = 1+8 = 9
     
    48 = 4 x 12 = 7 x 7 – 1
     
    Learning from Liu Hui
    http://www.ams.org/notices/200207/comm-cullen.pdf
    http://en.wikipedia.org/wiki/Zhou_Bi_Suan_Jing
    http://en.wikipedia.org/wiki/The_Nine_Chapters_on_the_Mathematical_Art
    http://en.wikipedia.org/wiki/Pythagorean_theorem#History
     
    iSQUARE = – 1
    http://en.wikipedia.org/wiki/History_of_complex_numbers#History
     
    Time you learned love and lust, they both have 4 letters
     
    666 : http://www.youtube.com/watch?v=m0hqgwo297g
     
    R.I.P.
    Romke Jan Bernhard Sloot ( 27-08-1945, 11-07-1999 )
    was a Dutch electronics technician, who claimed to have developed a revolutionary data compression technique, 
    the Sloot Digital Coding System
    http://en.wikipedia.org/wiki/Jan_sloot
     
    http://science2art.tumblr.com/post/18723310752/phi-369
    http://science2art.tumblr.com/post/18398397422/72
     

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Pagina 1 di 11

XML Sitemap